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Table 1. Calculated X-ray optical path difference, dt 
and dl 

W ~imit (~m) d,(~m) d/(~m) 
-2-39 640 220 41 
-1.13 780 220 41 

0.0 >1400 --  --  
1.07 810 220 41 
2.28 650 220 41 

interesting possibility. Actually, in the present experi- 
ment, some contrasts, probably due to so-called 
micro-defects, are already seen as distortions of the 
parallel equal-thickness fringes in the upper parts of 
Figs. 5(A) to (E) (except in Fig. 5C, where the Bragg 
condition is exactly satisfied). Further analysis of 
these micro-defect contrasts will be reported else- 
where. 

as the deviation from the exact Bragg condition 
becomes larger. The observed values of/limit for each 
W value, together with the calculated values of d, 
and dl from (4) and (5), are summarized in Table 1. 
Here, values of tlimi t w e r e  determined by densitometric 
measurement. 

The d, and dz values presented here imply that (a) 
the transverse coherence length is longer than d, and 
(b) the longitudinal coherence length is longer than 
dr. Although the visibility of fringe contrast becomes 
worse as the sample becomes thicker because of the 
effect of absorption, the two beams incident on points 
A and B in Fig. 2 are coherent when interference can 
be observed at point P. 

The applicability of the present method is limited 
to a highly collimated wave, the angular and spectral 
divergence of which is much less than the rocking- 
curve width of the sample crystal. Nevertheless, we 
can show that the coherence length of X-rays pro- 
duced by the present X-ray optics is fairly long in 
both longitudinal and transverse directions. This kind 
of coherent X-rays will enlarge the possibilities of 
X-ray holography in the hard-X-ray region, although 
attempts in this direction have been limited to the 
soft-X-ray region (Aoki & K_ikuta, 1974). 

Further, the application of the coherent X-rays 
obtained here to plane-wave X-ray topography is an 
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Abstract 

The theory of fixing the origin of the coordinate 
system in a polar space group by use of restraints 
(soft constraints or pseudo-observations) is devel- 
oped for any space group in any setting. The 
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coefficients of the optimal restraint equation are on 
the average proportional to the square of the atomic 
numbers. They are determined directly from the unre- 
strained singular normal-equations matrix. Applica- 
tion of the restraint results in a positive-definite matrix 
which is as nearly diagonal as possible for the atomic 
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500 ORIGIN FIXING IN POLAR SPACE GROUPS 

positional coordinates along the origin-free axes. Cor- 
relations between these coordinates are therefore 
minimized. A very compact completely general and 
easily implemented algorithm results which functions 
without user intervention. 

Introduction 

Certain non-centrosymmetric space groups possess 
one or several unique polar directions along which 
the origin of the coordinate system cannot be related 
to the positions of the symmetry elements. Such direc- 
tions are subsequently called origin free, whereas non- 
unique or non-polar directions are called origin fixed. 
Least-squares refinement on a structure with an 
origin-free direction will lead to a singular normal- 
equations matrix unless precautionary action is taken. 
Rollett, McKinlay & Haigh (1976) discuss and criti- 
cize several different methods of removing the singu- 
larity introduced by an origin-free direction c. These 
are by way of a constraining relationship between the 
z coordinates which may be introduced either as a 
constraint or as a restraint. For a constraint the vari- 
able space for the least-squares solution is restricted 
to that obeying the constraining relationship by use 
of Lagrangian multipliers or by elimination of vari- 
ables. For a restraint the constraining relationship is 
added as an extra pseudo-observation during the 
formation of the normal-equations matrix without 
any limitation on the variable space. 

Rollett, McKJnlay & Haigh (1976) discuss in par- 
ticular the implementation of the homogeneous con- 
straining relationship Y~, 6z, = 0 as a restraint rather 
than as a constraint by way of Lagrangian multipliers. 
The advantages are 'not to bother the normal 
equations with an extra row and column, but to add 
the same number to every element, diagonal or off- 
diagonal, of the matrix block corresponding to the z 
coordinates'. Further, 'the normal matrix should 
become positive definite, which would permit the use 
of fast and compact methods for solving the 
equations', presumably by way of Cholesky 
decomposition. It should also be mentioned that 
application of the constraining relationship as a con- 
straint by elimination of variables leads to long calcu- 
lations not only of partial derivatives of structure 
amplitudes but also of the e.s.d.'s and correlation 
coefficients of eliminated variables. 

The choice of the homogeneous constraining 
relationship is guided by a knowledge of the eigenvec- 
tor corresponding to the eigenvalue of zero producing 
the normal-equations singularity. It is, however, only 
one amongst an infinite family of constraining 
relationships of the form ~ .  a,,6z,, = 0  capable of 
removing the singularity by fixing the origin and 
leading to one of the solutions of the unmodified 
least-squares equations. The most generally used 
method consists in keeping the coordinate of one 

atom fixed, this being equivalent to setting all but 
one of the a, to zero. Waser (1974) discusses the 
optimal choice of the a,, in terms of minimal covari- 
ances between the z, and consequently proposes to 
fix the origin at a 'suitable centroid'. He advocates, 
at least in the initial stages of the refinement, to choose 
a, proportional to Z2~ where Z~ is the atomic number 
of the nth atom. 

In the current paper the implementation of origin- 
fixing algorithms by restraints is considered. The 
treatment of symmetry is perfectly general, starting 
from an initial analysis by Bernardinelli & Flack 
(1985) for the identification of the unique polar direc- 
tions from the symmetry operations of the space 
group in matrix form. We also present a solution to 
the problem of finding the origin-fixing relationship 
most appropriate for a given structure. It is found 
possible to automate this process entirely in very 
compact computer code leading to optimally stable 
positive-definite normal-equations matrices as expec- 
ted by Rollett, McKinlay & Haigh (1976). 

Notation 

The subscripts of vector and matrix elements are 
denoted by the following symbols: p ranging from 1 
to P to identify the origin-free directions and f rang- 
ing from P +  1 to 3; i, j and k ranging from 1 to 3 
for 3-vectors and 3 x 3 matrices; r and s ranging from 
1 to V for vectors and matrices dimensioned accord- 
ing to the number of variables V in the least squares; 
n and m ranging from 1 to N to identify the N 
independent atoms; g ranging from 1 to G to identify 
the G rotational matrices Sg of the point group; q 
ranging from 1 to Q to denote the Q observations 
]FI, IFI 2 or I. Vectors are assumed to be column 
vectors. An idempotent matrix is defined by f12= 1] 
and has eigenvectors of +1 and 0 only. 

Origin-free directions 

We consider first the manner of finding and represent- 
ing the free choice in the position of the origin. The 
number of non-collinear origin-free directions 
depends on the point symmetry group: in 1 there are 
three, in m there are two, and in all other polar point 
groups 2, 3, 4, 6, ram2, 3m, 4ram and 6ram there is 
one. For all other point groups, there is no free choice 
of origin. Let the P -< 3 origin-free directions be given 
by the vectors ~p with components Alp, A2p , A3p 
referred to the direct crystal axes al,  a2, an. The A~p 
thus transform as fractional coordinates. 3 -  P addi- 
tional vectors z~f = 0 are used to represent origin-fixed 
directions. The vectors zl, p and z~/are normalized and 
orthogonalized in the unitary parameter space such 
that 

AkiAkj = t~ij for z~ and z~j origin free ( 1 a) 
k 

= 0  for z~ and /or  ~j origin fixed, ( lb)  
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8ij being the Kronecker symbol. Let the matrix D be 
defined by D = (zi~, zi2, zi3). It can easily be shown 
using (1) that the product DDT" is symmetric and 
idempotent, i.e. (DDr)  r =DDT" and ( D D r ) 2 = D D  r. 
The zip # 0 are the eigenvectors of DD r with eigen- 
values of +1, i.e. (DD)z ip  = lzip. For point group 1, 
DD r is the unit matrix. 

Bernardinelli & Flack (1985) have shown that the 
zip may be found with the help of the idempotent 
projector 

l ~ = E  Sg /G  (2) 
g 

where the Sg are the 3 x 3 matrices representing the 
point group. The zip of the origin-free directions are 
the eigenvectors associated with the eigenvalues of 
+ 1 according to f l ap  = lzip, whereas the eigenvectors 
associated with the eigenvalues of 0 represent origin- 
fixed directions. Let T be the diagonalizing matrix 
formed by the eigenvectors of 1~, and L the diagonal 
matrix, similar to f l ,  such that f iT = TL. As TL is the 
matrix of the eigenvectors each scaled by the value 
of the corresponding eigenvalue, we see immediately 
that TL = D = liT. In addition, II  is symmetric since 
the sum of a rotation matrix and its inverse Sg +S~ -~ 
is similar to the sum of orthogonal matrices Og+ 
O~ l = O g + O g  r. Hence ~ ' ~ T = ~  and T is an 
orthogonal matrix obeying T - I = T  r. It follows that 
DD r =  l ~ T l ' r ~  r, which leads to 

DDT" = ~ ;  O U = ~ A,kAjk. (3) 
k 

Origin-fixing constraining relationships 

In a structure composed of N independent atoms at 
positions x, ,  a constraining relationship between the 
atomic coordinates x~, is a linear equation with 
coefficients ai,: 

E a l n X l n  + E a 2 n X 2 n  + E a3nX3n  = C ,  (4 )  
n n rl 

C being a constant. Displacement of the origin by a 
distance k zip[ along the polar direction zip changes 
all coordinates to x~, = x~ , -  kA~p, and (4) becomes 

~', ~, ainX~n = ~ ~ ainXin -- k Y. dip Y~ ain = C - ku 7"zip, 
i n i n i n 

where u is the vector with components u~ = Y~, a,,. If 
uT"zip=0, u is perpendicular to zip, (4) remains 
satisfied for any value of k and therefore does not 
fix the origin. This perpendicular type of constraining 
relationship introduces structural features such as 
atomic site symmetry, and bond distance and angle 
restrictions. On the other hand, if u is parallel to zip, 
u = CAp, the equation remains satisfied only for k -- 0 
and fixes the origin. This parallel type of constraining 
relationship introduces no restrictions on the struc- 
tural features. In general, (4) will have components 
of both the origin-fixing and structural-feature type. 

Clearly, such hybrid relationships should be avoided. 
The commonly used origin-fixing relationships, e.g. 
fixing the position of one atom or of the centre of 
mass of a group of atoms, are of the parallel type. 
The vector u of a pure origin-fixing relationship is an 
eigenvector of gl with eigenvalue 1, while u for a pure 
structure-feature relationship corresponds either to 
an origin-fixed direction or has all components u~ = 0: 

f lu = u origin fixing (5a) 

= 0 not origin fixing. (5b) 

From (5), one may ascertain automatically whether 
explicit origin-fixing constraining relationships have 
been entered at the start of a least-squares calculation. 
If one of the relationships is found to obey (5a), its 
u vector is normalized to Inl--1, and 1~ is replaced 
by a new idempotent matrix 1~' according to O,~ = 
O~j-u~uj. ~ '  represents the remaining origin-free 
directions. In principle, origin-fixing equations are 
only required to be linearly independent, but the more 
stringent orthogonality relations (1) can be assumed 
without loss of generality since the eigenvectors have 
the same degenerate eigenvalue of +1. 

The normal-equations matrix 

We now examine the singularities of the uncon- 
strained normal-equations matrix A in a refinement 
of an N-atom structure with P origin-free directions. 
Let Yq be the dependent variable with weight Wq 
appearing in the sum of squares, i.e. Yq is commonly 
taken as I F ,  F[ 2 or I. Displacement of the origin by 
kzip does not change the value of Y: 

Y(x,,) = Y(x,,, + kAip). 

The condition O Y/Ok = 0 leads immediately to 

r . A , p E o Y / O x , , , = O f o r p = l , . . . , P .  (6) 
i n 

A has the terms Ars =)-'.q Wq(O Yq/OVr)(O Yq/OVs), 
where v with components Vr is the vector of the refined 
parameters. Now define P V-dimensional column 
vectors qp with components q,.p = Alp if v~ is an x 
coordinate x~,, qrp = A2p if Vr is a y coordinate x2,, 
q,.p = A3p if v~ is a z coordinate X3p, and otherwise 
qrp =0. Clearly from (1), these vectors obey the 
orthogonality condition 

qrpqrp, = Nt~pp,. (7) 
r 

The product Aqp has components 

(Aqp)r = E  wqO Yq/ Ov~ E qspO Yq/ Ov~ 
q s 

= E Wqa Yq/OVr{E/li t, E 0 Y/Oxin} 
q i n 

=0  
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by using (6). Thus qp is an eigenvector of A with 
eigenvalue 0, 

Aqp = 0qp (8) 

and the singularities of A are herewith precisely iden- 
tified. The vector b of the normal e~uations Av = b is 
perpendicular to qp since qTAv = qp b = 0. 

Now consider fixing the origin with P restraints of 
the form of (4) and (Sa) where ai. = a.A~p" 

Zp(calc.) = Alp Z a.x , , ,  + A2p ~, anx2n + A3p ~ anx3n 
n n n 

=Cp.  (9) 

Defining PV-dimensional restraint vectors tp with 
components trp = a.Aip = a.qrp if Vr is a coordinate x~., 
and otherwise zero, permits (9) to be written as tprv = 
0. The constant Cp is chosen as the (arbitrary) value 
of (9) at the start of the refinement cycle, Zp(calc.) = 
Zp(obs.), and thus the contribution of the pseudo- 
observations to the normal-equations vector b is zero. 
The weight of the pseudo-observations is incorpor- 
ated in the coefficients a. ,  and is equal to (~ .  a .)  2. 
The derivatives of Zp a r e  OZp/OVr: anAip = trp for 
positional parameters vr = x~., and otherwise zero. On 
restraining, the normal equations change from Av -- b 
to A'v = b with A'rs = Ar~ + ~p A~pAjpama. for the posi- 
tional coordinates V~=Xim and vs=xj . ,  i.e. A'= 
A+~p  tptf.  From (3), the restrained matrix becomes 

A',s = A~s + Oi~ama,,, for Vr = Xi,,, and vs = xj, 

= Ar~, otherwise. (10) 

It can easily be shown that the inverse of A', if it 
exists, is of the form A '-~ = B+~p  T )2 qpqp / (Y.. a. with 
terms 

(A )rs = Brs + ~ij a,, for D r = X i m  and vs = x), 

= Brs, otherwise. (11) 

The vectors tp a r e  eigenvectors of B with eigen- 
values of zero. B is a function of the relative values 
of the a. and independent of the weight. As the weight 
tends to infinity, the restraint tends to become a 
constraint, and A '-~ tends to B. Premultiplying 
the solution of the normal equations v=A'-~b 
with t f ,  and using A~II=A~-,  gives t~v= 

T B + t T  T 2 - l  r {tp pEp. qp'qp' /(E, ,a.)  } b = ( E . a . )  q p b = 0 .  It 
follows that the solution satisfies the constraining 
relationship (9) exactly and independently of the 
choice of weight. On the other hand, the inverse A'- 
and thus the resulting variances and covariances are 
functions of the weight. These are important general 
properties of any restraint vector t with a component 
parallel to an eigenvector of eigenvalue zero. 

The  choice  o f  an opt imal  restraint  

Guiding principles 

Consider the special case of an origin-free direction 
parallel to the c axis. The derivative of I Fq[ 2 with 
respect to the coordinate z. along the origin-free 
direction is 

c3 Fq[2/Oz. =4.trlqf,. ~ f . , s i n 2 7 r h r ( x . . - - x . )  (12) 
t l '  

w h e r e  h T = ( h l q ,  hEq, haq) represents the Miller 
indices of the qth reflection and f .  is the atomic 
scattering factor. Refinement of the N coordinates z. 
results in an N x N normal-equations matrix with 
terms 

A m . = ~  Wq(gTrlq)2fmf~ ~ ~f , . ' f . '  sin 27rhq r 
q rift' t l '  

x (x , . , -  x, .) .  sin 27rhff(x.,- x.) .  (13) 

The expected value (Am.) is obtained by averaging 
(13) over all possible structures with the same 
stoichiometry, or by averaging over all hq at the same 
(sin 0)/A. Only the terms containing the sine-squared 
function do not average to zero. For the atomic scat- 
tering factors, we introduce the approximation f . - -  
Z~g(sin 0/A) where Z~ is the atomic number of atom 
n and g represents an average angular dependence. 
If the atoms occupy orbits of different multiplicty, Z. 
also contains a multiplicity factor. Addition of an 
origin-fixing restraint [(9),(10)] with coefficients 
K ~/2a. gives the following terms for the mean matrix 
CA'): 

(A ' , , , )= K { Z 2  ~ Z2. - Z :  + a2 ) 

(14) ( A ' . )  2 2 = K { - Z r . Z . + a , . a . } ,  m # n  

where K is a proportionality factor. The inverse (B') = 
(A') -~ is given by 

(B',,,) = k { ( S 2 - 2 a , , , S ) / Z ~  + T}+(KS2)  - '  

( B' , , )  = k{ T - S( a,,,/ Z ~  + a,,/ Z2n) } 
(~5) 

+ (KS2) -1, m # n, 

= , (a . /Z , , ) ,  k =  KS 2 Z 
n rl 

Equations (14) and (15) possess the properties men- 
tioned for (10) and (11). Expected correlation 
coefficients between zm and z. are given by 

Pro. =(B' ,) /((B' , , , ) (B' , , , , ) )  '/2. (16) 

As an illustration of the use of (15) and (16), S -2 will 
for the moment be assumed to be negligible, i.e. the 
restraint is given a very large weight and becomes a 
constraint. For an equi-atom structure, the 
homogeneous constraint a. = a for all n gives lowest 
correlations, Pro. = - 1 / (  N - 1). Fixing the position of 
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one of the atoms, for example by setting a2 = a3 = 

. . . .  aN = 0, results in correlation coefficients of+0"5 
between all the coordinates of atoms 2 to N. In a 
single-heavy-atom structure, let Z1 = H be large, and 
Z2 = . . . - Z N  = L be small. Correlation coefficients 
between light-atom coordinates are then + 1 / ( 1 +  
H 2 / L  2) and approximately - ( N +  1 ) / ( N  2 -  N -  1) 
for the fixed heavy atom and the homogeneous con- 
straint, respectively. Either choice is suitable. For 
structures containing several heavy atoms and some 
light atoms, on the other hand, correlation coefficients 
between heavy-atom coordinates may approach 
values near 1.0 for the homogeneous constraint. A 
much more appropriate choice involves only the coor- 
dinates of the heavy atoms. An algorithm using unit 
an for the heavier atoms and zero an for the lighter 
ones has been in satisfactory use in the C R Y S T A L S  
system (Watkin, Carruthers & Betteridge, 1985) for 
over a decade. Low correlations are also obtained by 
setting an = Z 2, as foreseen by Waser (1974). 

On retaining terms in S -2 and setting an = Z 2, (14) 
and (15) lead to diagonal matrices (A') and (B'), and 
thus to correlation coefficients of zero. The unre- 
strained matrix A obtained in practice with measured 
data cannot, of course, be converted into a diagonal 
matrix. However, by choosing to make the column 
or row sums of off-diagonal terms of the restrained 
A' equal to zero, a suitable set of coefficients an can 
be obtained from the diagonal unrestrained terms 
Amm by solving a set of N simultaneous equations 

2 a m ~ . , a n - a m = A m m ,  l < _ m < - N  (17) 
n 

where Atom is a real and positive quantity. The 
restrained matrix A' thus obtained has minimal off- 
diagonal elements in the sense that 

A ' n  = ~ Amn+am Y. an 
n , n ~ r n  n , n ~ r n  n , n ~ m  

= -Amm + am an - am 

=0,  l < - m < - N  (18) 

since Y~n Amn = 0, according to (8). The solution of 
(17) for the mean matrix (A) is, of course, an = Z~. 

General case 

Consider the general case of refinement of 3 N  
positional coordinates for N atoms, there being P 
origin-free directions defined by Ap. The origin-fixing 
restraint will be applied as in (10). Keeping to our 
criterion of reducing covariances, we will choose the 
an so that the weighted sum of off-diagonal terms in 
each column of the normal-equations matrix becomes 
zero in a way similar to (18). The weights in this sum 
have to be selected so that the known eigenvector 
and eigenvalue properties of A may be exploited. Let 
the element of the unrestrained A corresponding to 

Xi,n and Xjn be written Aim.j,. From (8) and the 
definition of qp, one obtains Y-j.n Aim, jnAjk = 0. Pre- 
multiplying by A~k and summing over k, we get 

E A,k E A,m, inAik = E A,~,i,, ~ Z,kAjk 
k j , n  j , n  k 

= Y A~mdnO U = 0 
j , n  

from (3). Summing over i, we get 

(19) 
| ,J 

The term in parentheses amounts to the collapsing 
of a 3 x 3 coordinate block of A into a scalar rep- 
resentative of the mean interaction between atoms 
m and n. Applying the origin-fixing restraints to A 
as in (10) and collapsing the 3 x3 blocks, we have 
~i,j Alm,jnf~ij : ~-,i,j A,,, j nJ '~ i j  -1- area,, ~ 12~ The idem- 

• 2 , J  " 
potency of 1~ results in ~ , j g 2 ~ j = t r a c e ( l ~ l l ) =  
trace ( l l )  =~,,i g2,. We set 

~A'irn,  j n f 2 i j = O ,  l < - m < - N ,  (20) 
n , n ~ m  i , j  

in analogy to (18), and use (19) to get 

am ~., a,, - a m : ~., Aim,jmff2ij J'~ii, 1 <- m <- N. (21) 
• . 

n l , j  

The solution of equations (21) to obtain the a, is 
discussed in the Appendix. 

The expected matrix (A) depends in general on the 
number and orientations of the origin-free and origin- 
fixed directions, as well as on the interaxial angles of 
the coordinate system. It can be shown that indepen- 
dently of these complications the solution of (21) is 
again an = ZZn. (A') then becomes block diagonal with 
(A[rn,jn) = 0 for m ~ n. Equation (21) remains valid in 
the presence of special position and other perpen- 
dicular constraints imposed by parameter elimina- 
tion, the summations over i and j being taken over 
the refined variables only. To prove that this is the 
case it is necessary to consider the derivation of (19) 
when some variables are eliminated. Elimination may 
be carried out by setting the corresponding Aim, jn 
terms to zero. This allows the sums over i, j and k to 
run from 1 to 3, the matrix has the same eigenvectors 
of zero as prior to elimination and the proof of (19) 
holds. In going to A', g2~jaman of (10) is to be added 
only to terms corresponding to refined variables. In 
the off-diagonal blocks, one of the indices i, j in 

2 ~ j  Ou is therefore restricted to the refined variables 
w~ereas the other runs from 1 to 3. From this (21) 
again follows. An example would be the constraints 
x = z and y = z for atom m occupying the threefold 
axis oriented along [ 111 ] in a primitive rhombohedral  
cell. Since z alone is refined, the sums on the right- 
hand side of (21) comprise only the term i = j  = 3. 
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Refinement on I FI gives the same matrix A' if the 
weights are chosen according to w(IFI) = 
41fl=w(IFI2). Equations (10), (20)and (21) may there- 
fore be used for the treatment of origin-free directions 
for any choice of Y. 

Algorithm 

Although much of the theory demonstrated above 
depends on the properties of the normal-equations 
and projector matrices, such as eigenvectors and 
eigenvalues, in practice it is not necessary to calculate 
these latent properties explicitly. In fact, the 
algorithm given below is wonderfully simple. No user 
intervention is required. We will assume that the 
symmetry operations of the space group are coded 
in the form used in many program systems as G 3 x 3 
rotation matrices Sg, and G 3 x 1 translation vectors 
tg and with flags to indicate the existence of a centre 
of symmetry at the origin and the lattice-centring 
mode. Constraints to be imposed by elimination of 
the rth variable Vr are stored as the coefficients c~ of 
the equation Vr =--Y'~*r CsV~+ CO which is equivalent 
to Y~, c~v~ = Co with Cr = 1"0. They are assumed to be 
of the pure origin-fixing or structure-feature types, 
and not of the hybrid type (see Origin-fixing constrain- 
ing relationships). The normal-equations matrix A is 
present in upper-triangular form and arranged as a 
contiguous array. The number function, number(r), 
returns the sequence number of the atom to which 
variable Vr belongs or zero if Vr is not an atom variable. 
The index function, index(r), returns 1, 2 or 3 if 
variable Vr is an x, y or z coordinate, respectively. 
Otherwise, index(r) returns 0 for non-positional 
variables. 

* On start-up only * 

If non-centrosymmetric then 
Form I/ ,  the average of the Sg, 1-/= (I/G)Y~g Sg 
Loop over all constraints between positional 

coordinates 
Form vector u, u~ = ~ c~ if vs is an x ( i=  1), 

y(i  = 2) or z(i = 3) coordinate 
Form vector w = l)u/[ul 
If IIwl- 1.0l < O.Ol then 

Set .Oij := £-2 U - w~wj 
Endif 

End Loop 
Calculate P = Tr(~)  = Y.i £-2. 

Else 
Set P := 0.0 

Endif 

* On all cycles * 

Accumulate non-origin-restrained 
normal-equations matrix A 

If P # 0.0 then 
Set the N coefficients b, := 0.0 and q, := 0.0 

Loop over all elements of A, Ars 
Set m := number(r) and n := number(s) 
If (m = n) and (m #0)  then 

Set i:= index(r) and j :=  index(s) 
If (i ~ 0) and (j ~ 0) then 

If (i = j )  then 
Set F := 1.0 
Set q,, := q,,, + f2, 

Else 
Set F := 2.0 

Endif 
Set b., := b,., + FAJ2ij 

Endif 
Endif 

End Loop 
Set the N coefficients b. := b,,/q. 
Solve N equations a,, ~...~,m a. = b,n 
Loop over all elements of A, Ar~ 

Set m := number(r) and n := number(s) 
Set i:= index(r) and j := index(s) 
If (i # 0) and (j # 0) then set Ars := Ar~ + a,,,a,,O o 

End Loop 
Endif 
Apply shift limiting restraints 
Invert matrix A. 

Tests 

The algorithm described in this paper has been imple- 
mented into two versions of the X R A Y  system, 
X R A Y 7 2  (Stewart, Kruger, Ammon, Dickinson & 
Hall, 1972) and X R A Y 7 6  (Stewart, Machin, 
Dickinson, Ammon, Heck & Flack, 1976) and has 
been found to operate completely satisfactorily. 

As an example of the behaviour of real data, the 
structure at 150K of Znla{N(CH3)4} 2 (Werk, Chapuis 
& Perret, 1987) has been refined using several different 
constraining relationships both as constraints and 
restraints. The space group is Pbc2~, with eight for- 
mula units per unit cell. H-atom positions were 
included in the refinement using distance and angle 
restraints. For the homogeneous origin-fixing 
restraint and constraint by parameter elimination, 
correlation coefficients of the z coordinates of Zn and 
I were all larger than 0.9, in agreement with the theory 
presented in the Guiding principles section of The 
choice of an optimal restraint. Fixing the position of 
one Zn or one I atom still resulted in correlation 
coefficients for heavy-atom z coordinates larger than 
0.6. These correlations became small, with absolute 
values below 0.1, when the a, of the light atoms C, 
N, H were assigned small values or set to zero. 
Coefficients between heavy-atom and light-atom z 
coordinates then also became negligible. Some co- 
ordinates of light atoms belonging to the same 
tetramethylammonium ion were considerably corre- 
lated with coefficients between 0.8 and 0.9, indepen- 
dently of the choice of the an, and this was therefore 
not due to the choice of the origin. 
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Concluding remarks 

To every set of coefficients a, in (9) corresponds a 
valid solution of the normal equations. In the present 
paper, we advocate the criterion that the matrix 
should become as nearly diagonal as possible [(18) 
and (20)]. This choice will lead to greater numerical 
stability of the matrix inversion and should ensure 
minimal correlations between relevant parameters. 
The values of error estimates obtained for derived 
quantities such as bond lengths and bond angles are, 
of course, independent of the choice of origin as long 
as the full variance-covariance calculation is carried 
out. As it is still customary in publications, deposited 
material and data bases to record only the diagonal 
elements of the variance-covariance matrix, the 
diagonalizing property of the restraint represents a 
clear advantage. The homogeneous restraint with a, = 
a for all n, as proposed by Rollett, McKinlay & Haigh 
(1976), is particularly easy to implement in a com- 
puter program, but results for certain structures in 
unacceptably large correlations. One proposal of 
Waser (1974) to set a, inversely proportional to the 
variance of the nth coordinate z, cannot be justified 
from (15). The diagonal terms of the normal- 
equations matrix and its inverse are not proportional 
to Z 2 and Z~:, respectively. Another suggestion by 
Waser (1974) to use a, = Z~ finds some justification 
but imposed as a constraint it does not result in a 
diagonal matrix (15). With the later scheme, atoms 
in special positions need particular attention both 
from the point of view of fixed variable and site 
multiplicity. With the minimum-covariance scheme 
presented above, these aspects are automatically 
taken care of and the a, from (21) also incorporate 
the effects of structure-feature constraints or restraints 
such as distance and angle restraints. 

The origin-fixing restraints used here are very 
closely related to the 'shift-limiting' restraints 
included for other purposes in the CR YSTALS sys- 
tem (Watkin, Carruthers & Betteridge, 1985) and the 
'individual-parameter variance' of the Bayesian 
expert system of Milledge, Mendelssohn, O'Brien & 
Webb (1985). In practice these operate by using 
pseudo-observations which state that some variables 
(or linear combination of variables) should stay near 
their current values. Each variable may have its own 
variance or weight specified. We confirm the 
experience of others that this method of damping is 
vastly superior to the practice of taking partial shifts 
after an unrestrained refinement. Shift-limiting 
restraints may be non-orthogonal to the origin-fixing 
restraints, and they should therefore be added to the 
matrix only after the determination of the coefficients 
an. 

A highly improper method of converting a singular 
or near-singular matrix into a positive-definite one 
consists of simply disregarding selected off-diagonal 

terms, e.g. by using a block-diagonal algorithm. This 
approximation should be used only for reasons of 
economy and limited computer resources, and we 
recommend that origin-fixing restraints continue to 
be used in the same way as in a full-matrix refinement. 

This work has been supported by the Swiss 
National Science Foundation. 

APPENDIX 

We discuss the real solution of the N simultaneous 
equations 

2 amZ a , -am=am • a,=bm, 
rl n,  rl T~ m 

1 <- m <_ N, bm> 0 and real. (A1) 

Solving the quadratic equations, we get 

am=S±(S2-bm) '/2, S = 2  a,/2. (A2) 
n 

If  there exists a real solution, it follows that all am are 
positive, or all am are negative. Without loss of gener- 
ality, we can restrict our attention to the positive 
solution. At most one of the am may be larger than 
S, and thus only one of the signs in (A2) may be 
positive. The difference between equations r and s is 

(at-as) 2 am=br-bs. (A3) 
ra, m ~ r , s  

Consequently, if b~-> b~, then ar - as. The sum of all 
2 N equations gives 4S 2 - 2 m  am = 2m bin. The variance 

of the am is the sum of the square deviates v =  
2_4S2/N>_0. It follows 2m (am - 2S /N)  2 = 2m am 

that 

(~m am)2= { N /  ( N - 1 ) } { ~  m bin+v} 

>- { N / ( N -  1)} 2 bin. (A4) 
m 

Similarly, the sum of all equations except equation r 
gives 

am - F~ a,,= 2 b,,-b~ 

= 2  bm-2br > 0. (A5) 
m 

Equation (A5) shows the condition for the existence 
of a real solution. It can be shown that this solution 
is unique. 

The variance Vr is defined as the sum of the square 
deviates except a,, 

v~= 2 {am-  2 a , , / (N-1)}  2. 
m , m ~  r II, r l ~  r 
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Introducing this in (A5) and using (A1), we have 

a r = { ( N - Z ) b  2} ( N - l )  bm-2br+v~ . (A6) 

Equation (A6) is used to obtain a numerical solution. 
If we set first all Vr to zero, approximate values a'r -> ar 
are calculated. These serve to obtain approximate 
values v'r which are introduced in (A6) to obtain 
improved estimates of a ,  If (~m b,,-2br)/b~>O.Ol,  
about five iterations are sufficient to reach conver- 
gence at the 0.1% level, i.e. [(a'~- a~)/a'~] < 0-001 and 
[ b,, (calc.) - bin]~ bm< 0.001. 

An explicit solution is easily calculated for the 
special case where all bm except one are equal: 

bl, b2 = b3 = . . . =  bN : 

a 2 ---- { ( N -  2) bE}/{( N -  1)2b2 - ( S - 1)bl} 
a 2 = a 2 = . . . = a 2  (37)  

= { ( N -  1 ) b 2 - b , } / { ( N -  1 ) ( N- 2 ) } .  
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Abstract 

The ambiguities in merohedral crystal classes are 
discussed from the group-theoretical point of view. 
A classification of merohedral point groups and the 
extension of these terms to space groups and crystal 
structures is proposed. Similarities and differences 
for special types of merohedries are discussed. 

I. Introduction 

Recently Jones (1986) discussed ambiguities and their 
resolution in non-centrosymmetric crystal classes. He 
subdivides the non-centrosymmetric point groups 
into chiral, polar and roto-inversional subclasses, the 
last one containing only non-centrosymmetric point 
groups with roto-inversions 4 and 6. The ambiguities 
are resolved for the chiral subclass by determination 
of the absolute configurations, for the polar subclass 

by fixing the polar direction, and for the roto-inver- 
sional subclass by the assignment of absolute axes. 

The usual classification of crystallographic point 
groups was introduced by Schoenflies (1891) mainly 
on the basis of subgroup relations; the nomenclature 
was derived from morphology. The main classes are 
the lattice point groups, which are called holohedries; 
point groups which are within a crystal family of 
subgroups of a holohedry are called merohedries (cf 
also International Tables for Crystallography, 1987). 
The index of the subgroup is indicated in the name: 
hemihedry, tetartohedry, ogdohedry for indices 2, 4, 8 
respectively. A more subtle distinction subdivides into 
'paramorphic, enantiomorphic, hemimorphic'  types 
of merohedries. These expressions, however, are used 
with different meanings by different authors (e.g. 
Schoenflies, 1891; Niggli, 1919; Burckhardt, 1966; 
Kleber, 1985). Nevertheless, there was a general 
consensus that these distinctions derived from 
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